Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Multiple-use conflicts of the marine benthos (“bottom-use conflicts”) are increasing as humans expand use of the coastal zone. These conflicts necessitate balanced policies that consider the economic and ecological benefits of different bottom uses. In the Virginia coastal lagoons on the US east coast, there is a potential bottom-use conflict between hard clam (Mercenaria mercenaria) aquaculture and seagrass (Zostera marina) meadows. We leveraged two decades (2001–2021) of aerial imagery and environmental data to quantify historic trends in bottom use, assess the realized niche of seagrass and clam aquaculture across depth, sand fraction, root mean square (RMS) velocity, fetch, and sea surface temperature (SST) anomaly, and used random forest models to predict the potential extent of seagrass, clam aquaculture, and bottom-use conflict. We found growth in the coverage of both seagrass (+ 3373%) and clam aquaculture (+ 140%) over the past 20 years with a corresponding increase in bottom-use conflict (+ 2579%), though conflict area remained relatively minor. Seagrass occurred in deeper areas with higher fetch, a higher frequency of SST anomalies, lower sand fraction, and similar RMS velocities to areas containing clam aquaculture. Our random forest models predicted potential for the expansion of seagrass (+ 62%) and clam aquaculture (+ 263.9%) with a relatively small area of predicted spatial overlap (12.3%) under current conditions. These results illustrate how species distribution models can help us understand the spatial impacts of aquaculture on natural ecosystems and inform managers and policy makers to create objective policies that balance socioeconomic and ecologic needs.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Meyer, Rachel (Ed.)Abstract The Pismo clam, Tivela stultorum, is an ecologically and economically important species inhabiting sandy beaches and subtidal zones in central and southern California, USA, and northern Baja California, Mexico. This long-lived venerid clam species is of great management, cultural and conservation interest in California where it was harvested for centuries by indigenous people and then nearly extirpated by intense commercial and recreational overfishing in the mid-1900s. A recreational fishery continues today in California; however, T. stultorum faces pressure from poaching, overharvest, and the loss of sandy beaches from rising sea levels and beach erosion. Understanding the susceptibility and resilience of Pismo clams to these pressures is essential for their conservation. We used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to assemble a highly contiguous genome of 763 Mb. The genome had a contig N50 of 13 Mb and a scaffold N50 of 38 Mb with a BUSCO completeness score of 95%. Most of the genome sequences (96%) were contained in 19 scaffolds at least 10MB long, consistent with prior evidence that venerid clam genomes are composed of 19 autosomes. This reference genome will enable a more complete understanding of the ecology and evolutionary dynamics of T. stultorum via population genomic analyses, which will help assess risks from climate, fishing, environmental change, and susceptibilities due to life history. Our goal is to better support the continued recovery, informed management and conservation, and future persistence of T. stultorum, a long-lived and highly valued clam species.more » « lessFree, publicly-accessible full text available February 19, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood. Synchrony has destabilizing effects on ecosystems, adding to the importance of understanding spatiotemporal patterns of synchrony transmission. In order to understand whether and how spatial synchrony cascades across the marine-terrestrial boundary via resource subsidies, we studied the relationship between giant kelp forests on rocky nearshore reefs and sandy beach ecosystems that receive resource subsidies in the form of kelp wrack (detritus). We found that synchrony cascades from rocky reefs to sandy beaches, with spatiotemporal patterns mediated by fluctuations in live kelp biomass, wave action, and beach width. Moreover, wrack deposition synchronized local abundances of shorebirds that move among beaches seeking to forage on wrack-associated invertebrates, demonstrating that synchrony due to subsidies propagates across trophic levels in the recipient ecosystem. Synchronizing resource subsidies likely play an underappreciated role in the spatiotemporal structure, functioning, and stability of ecosystems.more » « less
-
Coastal dunes are globally recognized as natural features that can be important adaptation approaches for climate change along urban and natural shores. We evaluated the recovery of coastal dunes on an intensively groomed urban beach in southern California over a six-year period after grooming was discontinued. Restoration actions were minimal and included installation of three sides of perimeter sand fencing, cessation of mechanical grooming and driving, and the addition of seeds of native dune plants. To track recovery, we conducted physical and biological surveys of the restoration site and an adjacent control site (groomed beach) using metrics including sand accretion, elevation, foredune and hummock formation, vegetation recovery, and wildlife use. Sediment accretion, elevation, and geomorphic complexity increased over time in the restoration site, largely in association with sand fencing and dune vegetation. A foredune ridge (maximum elevation increase of 0.9 m) and vegetated hummocks developed, along with a general increase in elevation across the restoration site (0.3 m). After six years, an estimated total volume of approximately 1,730 m3of sand had accreted in the restoration site and 540 m3of sand had accreted in the foredune ridge. Over the same period, more than a meter of sediment (vertical elevation change) accumulated along the perimeter sand fencing. Groomed control areas remained flat and uniform. The total cover of vegetation in the restoration site increased over time to a maximum of approximately 7% cover by the sixth year. No vegetation was observed on the groomed control site. Native plant species formed distinct zones across the restoration site beginning by the second year and increasing over time, with dune forming species aggregating closest to the ocean in association with the incipient foredune ridge. Ecological functions observed in the restoration area included presence of dune invertebrates, shorebird roosting, and use by a breeding federally threatened shorebird, the western snowy plover (Charadrius nivosus nivosus). Our findings on geomorphic and ecological responses of a pilot dune restoration on a heavily groomed urban beach provide new insights on the opportunities and expectations for restoring dunes as nature-based solutions for climate adaptation on urban shorelines.more » « less
An official website of the United States government
